Test 5 - Reading

READING PASSAGE 1

You should spend about 20 minutes on Questions 1-13, which are based on Reading Passage 1 below.

Going Bananas

The world's favourite fruit could disappear forever in 10 years’ time

The banana is among the world’s oldest crops. Agricultural scientists believe that the first edible banana was discovered around ten thousand years ago. It has been at an evolutionary standstill ever since it was first propagated in the jungles of South-East Asia at the end of the last ice age. Normally the wild banana, a giant jungle herb called Musa acuminata, contains a mass of hard seeds that make the fruit virtually inedible. But now and then, hunter-gatherers must have discovered rare mutant plants that produced seedless, edible fruits. Geneticists now know that the vast majority of these soft-fruited plants resulted from genetic accidents that gave their cells three copies of each chromosome instead of the usual two. This imbalance prevents seeds and pollen from developing normally, rendering the mutant plants sterile. And that is why some scientists believe the world’s most popular fruit could be doomed. It lacks the genetic diversity to fight off pests and diseases that are invading the banana plantations of Central America and the smallholdings of Africa and Asia alike.

In some ways, the banana today resembles the potato before blight brought famine to Ireland a century and a half ago. But it holds a lesson for other crops, too, says Emile Frison, top banana at the International Network for the Improvement of Banana and Plantain in Montpellier, France. The state of the banana, Frison warns, can teach a broader lesson: the increasing standardisation of food crops round the world is threatening their ability to adapt and survive.

The first Stone Age plant breeders cultivated these sterile freaks by replanting cuttings from their stems. And the descendants of those original cuttings are the bananas we still eat today. Each is a virtual clone, almost devoid of genetic diversity. And that uniformity makes it ripe for diseases like no other crop on Earth. Traditional varieties of sexually reproducing crops have always had a much broader genetic base, and the genes will recombine in new arrangements in each generation. This gives them much greater flexibility in evolving responses to disease – and far more genetic resources to draw on in the face of an attack. But that advantage is fading fast, as growers increasingly plant the same few, high-yielding varieties. Plant breeders work feverishly to maintain resistance in these standardised crops. Should these efforts falter, yields of even the most productive crop could swiftly crash. “When some pest or disease comes along, severe epidemics can occur,” says Geoff Hawtin, director of the Rome-based International Plant Genetic Resources Institute.

The banana is an excellent case in point. Until the 1950s, one variety, the Gros Michel, dominated the world’s commercial banana business. Found by French botanists in Asia in the 1820s, the Gros Michel was by all accounts a fine banana, richer and sweeter than today’s standard banana and without the latter’s bitter aftertaste when green. But it was vulnerable to a soil fungus that produced a wilt known as Panama disease. “Once the fungus gets into the soil, it remains there for many years. There is nothing farmers can do. Even chemical spraying won’t get rid of it,” says Rodomiro Ortiz, director of the International Institute for Tropical Agriculture in Ibadan, Nigeria. So plantation owners played a running game, abandoning infested fields and moving to “clean” land – until they ran out of clean land in the 1950s and had to abandon the Gros Michel. Its successor, and still the reigning commercial king, is the Cavendish banana, a 19th-century British discovery from southern China. The Cavendish is resistant to Panama disease and, as a result, it literally saved the international banana industry. During the 1960s, it replaced the Gros Michel on supermarket shelves. If you buy a banana today, it is almost certainly a Cavendish. But even so, it is a minority in the world’s banana crop.

Half a billion people in Asia and Africa depend on bananas. Bananas provide the largest source of calories and are eaten daily. Its name is synonymous with food. But the day of reckoning may be coming for the Cavendish and its indigenous kin. Another fungal disease, black Sigatoka, has become a global epidemic since its first appearance in Fiji in 1963. Left to itself, black Sigatoka – which causes brown wounds on leaves and premature fruit ripening – cuts fruit yields by 50 to 70 per cent and reduces the productive lifetime of banana plants from 30 years to as little as 2 or 3. Commercial growers keep black Sigatoka at bay by a massive chemical assault. Forty sprayings of fungicide a year is typical. But even so, diseases such as black Sigatoka are getting more and more difficult to control. “As soon as you bring in a new fungicide, they develop resistance,” says Frison. “One thing we can be sure of is that black Sigatoka won't lose in this battle.” Poor farmers, who cannot afford chemicals, have it even worse. They can do little more than watch their plants die. “Most of the banana fields in Amazonia have already been destroyed by the disease,” says Luadir Gasparotto, Brazil’s leading banana pathologist with the government research agency EMBRAPA. Production is likely to fall by 70 per cent as the disease spreads, he predicts. The only option will be to find a new variety.

But how? Almost all edible varieties are susceptible to the diseases, so growers cannot simply change to a different banana. With most crops, such a threat would unleash an army of breeders, scouring the world for resistant relatives whose traits they can breed into commercial varieties. Not so with the banana. Because all edible varieties are sterile, bringing in new genetic traits to help cope with pests and diseases is nearly impossible. Nearly, but not totally. Very rarely, a sterile banana will experience a genetic accident that allows an almost normal seed to develop, giving breeders a tiny window for improvement. Breeders at the Honduran Foundation of Agricultural Research have tried to exploit this to create disease-resistant varieties. Further backcrossing with wild bananas yielded a new seedless banana resistant to both black Sigatoka and Panama disease.

Neither Western supermarket consumers nor peasant growers like the new hybrid. Some accuse it of tasting more like an apple than a banana. Not surprisingly, the majority of plant breeders have until now turned their backs on the banana and got to work on easier plants. And commercial banana companies are now washing their hands of the whole breeding effort, preferring to fund a search for new fungicides instead. “We supported a breeding programme for 40 years, but it wasn’t able to develop an alternative to the Cavendish. It was very expensive and we got nothing back,” says Ronald Romero, head of research at Chiquita, one of the Big Three companies that dominate the international banana trade.

Last year, a global consortium of scientists led by Frison announced plans to sequence the banana genome within five years. It would be the first edible fruit to be sequenced. Well, almost edible. The group will actually be sequencing inedible wild bananas from East Asia because many of these are resistant to black Sigatoka. If they can pinpoint the genes that help these wild varieties to resist black Sigatoka, the protective genes could be introduced into laboratory tissue cultures of cells from edible varieties. These could then be propagated into new, resistant plants and passed on to farmers.

It sounds promising, but the big banana companies have, until now, refused to get involved in GM research for fear of alienating their customers. “Biotechnology is extremely expensive and there are serious questions about consumer acceptance,” says David McLaughlin, Chiquita’s senior director for environmental affairs. With scant funding from the companies, the banana genome researchers are focusing on the other end of the spectrum. Even if they can identify the crucial genes, they will be a long way from developing new varieties that smallholders will find suitable and affordable. But whatever biotechnology’s academic interest, it is the only hope for the banana. Without it, banana production worldwide will head into a tailspin. We may even see the extinction of the banana as both a lifesaver for hungry and impoverished Africans and the most popular product on the world’s supermarket shelves.

Questions 1-3

Complete the sentences below with NO MORE THAN THREE WORDS from the passage.

Write your answers in boxes 1-3 on your answer sheet.

1    The banana was first eaten as a fruit by humans almost ................ years ago.

2    Bananas were first planted in ................ .

3    The taste of wild banana is adversely affected by its ................ .

1
ten thousand
1
2
South-East Asia
2
3
plantations - hard seeds//seeds
3
Questions 4-10

Look at the following statements (Questions 4-10) and the list of people below.

Match each statement with the correct person, A-F.

Write the correct letter, A-F, in boxes 4-10 on your answer sheet.

NB       You may use any letter more than once.

List of People

A   Rodomiro Ortiz

B   David McLaughlin

C   Emile Frison

D   Ronald Romero

E    Luadir Gasparotto

F    Geoff Hawtin

4
B - F
A pest invasion may seriously damage banana industry.
5
E - A
The effect of fungal infection in soil is often long-lasting.
6
D
A commercial manufacturer gave up on breeding bananas for disease resistant species.
7
C
Banana disease may develop resistance to chemical sprays.
8
A - E
A banana disease has destroyed a large number of banana plantations.
9
F - B
Consumers would not accept genetically altered crops.
10
E - C
Lessons can be learned from bananas for other crops.
Questions 11-13

Do the following statements agree with the information given in Reading Passage 1?

In boxes 11-13 on your answer sheet, write

TRUE               if the statement agrees with the information

FALSE              if the statement contradicts the information

NOT GIVEN     if there is no information on this

Question :
11
true - Not given
The banana is the oldest known fruit.
12
true - False
The Gros Michel is still being used as a commercial product.
13
true
Banana is the main food in some countries.

READING PASSAGE 2

You should spend about 20 minutes on Questions 14-26, which are based on Reading Passage 2.

European Transport Systems 1990-2010

What have been the trends and what are the prospects for European transport systems?

A

It is difficult to conceive of vigorous economic growth without an efficient transport system. Although modern information technologies can reduce the demand for physical transport by facilitating teleworking and teleservices, the requirement for transport continues to increase. There are two key factors behind this trend. For passenger transport, the determining factor is the spectacular growth in car use. The number of cars on European Union (EU) roads saw an increase of three million cars each year from 1990 to 2010, and in the next decade the EU will see a further substantial increase in its fleet.

B

As far as goods transport is concerned, growth is due to a large extent to changes in the European economy and its system of production. In the last 20 years, as internal frontiers have been abolished, the EU has moved from a ‘stock’ economy to a ‘flow’ economy. This phenomenon has been emphasised by the relocation of some industries, particularly those which are labour intensive, to reduce production costs, even though the production site is hundreds or even thousands of kilometres away from the final assembly plant or away from users.

C

The strong economic growth expected in countries which are candidates for entry to the EU will also increase transport flows, in particular road haulage traffic. In 1998, some of these countries already exported more than twice their 1990 volumes and imported more than five times their 1990 volumes. And although many candidate countries inherited a transport system which encourages rail, the distribution between modes has tipped sharply in favour of road transport since the 1990s. Between 1990 and 1998, road haulage increased by 19.4%, while during the same period rail haulage decreased by 43.5%, although – and this could benefit the enlarged EU – it is still on average at a much higher level than in existing member states.

D

However, a new imperative – sustainable development – offers an opportunity for adapting the EU’s common transport policy. This objective, agreed by the Gothenburg European Council, has to be achieved by integrating environmental considerations into Community policies, and shifting the balance between modes of transport lies at the heart of its strategy. The ambitious objective can only be fully achieved by 2020, but proposed measures are nonetheless a first essential step towards a sustainable transport system which will ideally be in place in 30 years’ time, that is by 2040.

E

In 1998, energy consumption in the transport sector was to blame for 28% of emissions of CO2, the leading greenhouse gas. According to the latest estimates, if nothing is done to reverse the traffic growth trend, CO2 emissions from transport can be expected to increase by around 50% to 1,113 billion tonnes by 2020, compared with the 739 billion tonnes recorded in 1990. Once again, road transport is the main culprit since it alone accounts for 84% of the CO2 emissions attributable to transport. Using alternative fuels and improving energy efficiency is thus both an ecological necessity and a technological challenge.

F

At the same time greater efforts must be made to achieve a modal shift. Such a change cannot be achieved overnight, all the less so after over half a century of constant deterioration in favour of road. This has reached such a pitch that today rail freight services are facing marginalisation, with just 8% of market share, and with international goods trains struggling along at an average speed of 18km/h. Three possible options have emerged.

G

The first approach would consist of focusing on road transport solely through pricing. This option would not be accompanied by complementary measures in the other modes of transport. In the short term it might curb the growth in road transport through the better loading ratio of goods vehicles and occupancy rates of passenger vehicles expected as a result of the increase in the price of transport. However, the lack of measures available to revitalise other modes of transport would make it impossible for more sustainable modes of transport to take up the baton.

H

The second approach also concentrates on road transport pricing but is accompanied by measures to increase the efficiency of the other modes (better quality of services, logistics, technology). However, this approach does not include investment in new infrastructure, nor does it guarantee better regional cohesion. It could help to achieve greater uncoupling than the first approach, but road transport would keep the lion’s share of the market and continue to concentrate on saturated arteries, despite being the most polluting of the modes. It is therefore not enough to guarantee the necessary shift of the balance.

I

The third approach, which is not new, comprises a series of measures ranging from pricing to revitalising alternative modes of transport and targeting investment in the trans-European network. This integrated approach would allow the market shares of the other modes to return to their 1998 levels and thus make a shift of balance. It is far more ambitious than it looks, bearing in mind the historical imbalance in favour of roads for the last fifty years, but would achieve a marked break in the link between road transport growth and economic growth, without placing restrictions on the mobility of people and goods.

Questions 14-21

Reading Passage 2 has nine paragraphs, A-I.

Choose the correct heading for paragraphs A-E and G-l from the list of headings below.

Write the correct number, i-xi, in boxes 14-21 on your answer sheet.

List of Headings

i     A fresh and important long-term goal

ii    Charging for roads and improving other transport methods

iii   Changes affecting the distances goods may be transported

iv   Taking all the steps necessary to change transport patterns

v    The environmental costs of road transport

vi   The escalating cost of rail transport

vii  The need to achieve transport rebalance

viii The rapid growth of private transport

ix   Plans to develop major road networks

x    Restricting road use through charging policies alone

xi   Transport trends in countries awaiting EU admission

 

Example                      Answer

Paragraph F                vii

14
- viii
Paragraph A
15
- iii
Paragraph B
16
- xi
Paragraph C
17
- i
Paragraph D
18
- v
Paragraph E
19
- x
Paragraph G
20
- ii
Paragraph H
21
- iv
Paragraph I
Questions 22-26

Do the following statements agree with the information given in Reading Passage 2?

In boxes 22-26 on your answer sheet, write

TRUE               if the statement agrees with the information

FALSE              if the statement contradicts the information

NOT GIVEN     if there is no information on this

Question :
22
- True
The need for transport is growing, despite technological developments.
23
- False
To reduce production costs, some industries have been moved closer to their relevant consumers.
24
- Not given
Cars are prohibitively expensive in some EU candidate countries.
25
- Not given
The Gothenburg European Council was set up 30 years ago.
26
- False
By the end of this decade, CO2 emissions from transport are predicted to reach 739 billion tonnes.

READING PASSAGE 3

You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below.

The history of the tortoise

If you go back far enough, everything lived in the sea. At various points in evolutionary history, enterprising individuals within many different animal groups moved out onto the land, sometimes even to the most parched deserts, taking their own private seawater with them in blood and cellular fluids. In addition to the reptiles, birds, mammals and insects which we see all around us, other groups that have succeeded out of water include scorpions, snails, crustaceans such as woodlice and land crabs, millipedes and centipedes, spiders and various worms. And we mustn’t forget the plants, without whose prior invasion of the land none of the other migrations could have happened.

Moving from water to land involved a major redesign of every aspect of life, including breathing and reproduction. Nevertheless, a good number of thoroughgoing land animals later turned around, abandoned their hard-earned terrestrial re-tooling, and returned to the water again. Seals have only gone part way back. They show us what the intermediates might have been like, on the way to extreme cases such as whales and dugongs. Whales (including the small whales we call dolphins) and dugongs, with their close cousins the manatees, ceased to be land creatures altogether and reverted to the full marine habits of their remote ancestors. They don’t even come ashore to breed. They do, however, still breathe air, having never developed anything equivalent to the gills of their earlier marine incarnation. Turtles went back to the sea a very long time ago and, like all vertebrate returnees to the water, they breathe air. However, they are, in one respect, less fully given back to the water than whales or dugongs, for turtles still lay their eggs on beaches.

There is evidence that all modem turtles are descended from a terrestrial ancestor which lived before most of the dinosaurs. There are two key fossils called Proganochelys quenstedti and Palaeochersis talampayensis dating from early dinosaur times, which appear to be close to the ancestry of all modem turtles and tortoises. You might wonder how we can tell whether fossil animals lived on land or in water, especially if only fragments are found. Sometimes it’s obvious. Ichthyosaurs were reptilian contemporaries of the dinosaurs, with fins and streamlined bodies. The fossils look like dolphins and they surely lived like dolphins, in the water. With turtles it is a little less obvious. One way to tell is by measuring the bones of their forelimbs.

Walter Joyce and Jacques Gauthier, at Yale University, obtained three measurements in these particular bones of 71 species of living turtles and tortoises. They used a kind of triangular graph paper to plot the three measurements against one another. All the land tortoise species formed a tight cluster of points in the upper part of the triangle; all the water turtles cluster in the lower part of the triangular graph. There was no overlap, except when they added some species that spend time both in water and on land. Sure enough, these amphibious species show up on the triangular graph approximately half way between the ‘wet cluster’ of sea turtles and the ‘dry cluster’ of land tortoises. The next step was to determine where the fossils fell. The bones of P. quenstedti and P. talampayensis leave us in no doubt. Their points on the graph are right in the thick of the dry cluster. Both these fossils were dry-land tortoises. They come from the era before our turtles returned to the water.

You might think, therefore, that modern land tortoises have probably stayed on land ever since those early terrestrial times, as most mammals did after a few of them went back to the sea. But apparently not. If you draw out the family tree of all modern turtles and tortoises, nearly all the branches are aquatic. Today’s land tortoises constitute a single branch, deeply nested among branches consisting of aquatic turtles. This suggests that modern land tortoises have not stayed on land continuously since the time of P. quenstedti and P. talampayensis. Rather, their ancestors were among those who went back to the water, and they then re- emerged back onto the land in (relatively) more recent times.

Tortoises therefore represent a remarkable double return. In common with all mammals, reptiles and birds, their remote ancestors were marine fish and before that various more or less worm-like creatures stretching back, still in the sea, to the primeval bacteria. Later ancestors lived on land and stayed there for a very large number of generations. Later ancestors still evolved back into the water and became sea turtles. And finally they returned yet again to the land as tortoises, some of which now live in the driest of deserts.

Questions 27-30

Answer the questions below.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

Write your answers in boxes 27-30 on your answer sheet.

27
- plants
What had to transfer from sea to land before any animals could migrate?
28
- breathing; reproduction//reproduction; breathing//breathing. reproduction//reproduction, breathing
Which TWO processes are mentioned as those in which animals had to make big changes as they moved onto land?
29
- gills
Which physical feature, possessed by their ancestors, do whales lack?
30
- dolphins
Which animals might ichthyosaurs have resembled?
Designed and built with all the love in the world by the IMAP TECH
Bảng câu hỏi
📝